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Quasilinear theory of high-gain FEL saturation
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Abstract

Understanding of saturation behavior is important to assess the performance of a high-gain free-electron laser. In this
paper, we study the saturation mechanism using a quasilinear approximation to the coupled Maxwell–Vlasov

equations. It is found that the quasilinear theory correctly describes the evolution of the radiation field from the small
signal regime to reaching saturation. r 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

An electron beam traveling through a long
undulator is unstable with respect to the long-
itudinal bunching at the frequency of the sponta-
neous undulator radiation in the forward
direction. For small bunching the system is linear,
and the bunching grows exponentially along the
undulator. However when the value of bunching
becomes not so small, the exponential growth
stops. This phenomenon is referred to as ‘‘satura-
tion’’. The reason for saturation is the obvious fact
that the value of bunching cannot exceed 1, as the
distribution function of particles is positive. In
other words, the amplitude of the AC component
of the electron current cannot exceed its DC
component by more than twice. From the point of
view of the linear small-signal theory, the growth
of a particular harmonic of the distribution

function is limited by the nonlinear interaction
with other harmonics. Sometimes the interaction
with the zero harmonics (the average) dominates.
The beam energy spread increases and therefore
the bunching growth rate decreases. This mechan-
ism is well known in plasma physics as the
quasilinear relaxation (see, for example [1]).
In this paper, we derive the quasilinear equations

for 1-D free-electron laser (FEL) theory and solve
them numerically. It is shown that for large enough
initial energy spread the maximum bunching is
much less than one, and so the quasilinear approxi-
mation is applicable until the saturation length.

2. Derivation of quasilinear equations

The FEL equations may be obtained from the
Maxwell equations and continuity equation in the
phase space (Vlasov equation). To simplify the
consideration we assume the electromagnetic wave
to be quasimonochromatic, i.e., having a narrow
spectrum near frequency o: It is exactly true if we
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neglect radiation at higher harmonics of the
fundamental frequency (for weak undulator field,
for example). Using the standard approach [2] one
can easily write down the following equations for
the distribution function f ðc; Z; xÞ and the dimen-
sionless complex field amplitude Aðc; xÞ:
qf
qx

þ Z
qf
qc

� 2 ReðAeicÞ
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qZ
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0

Z
N

�N
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Here x ¼ 2rkwz is the dimensionless longitudinal
coordinate, kw is the undulator wavenumber, r is
the Pierce parameter, Z ¼ dg=ðg=rÞ is the relative
deviation of particle energy from the synchronous
one g ¼ ð1þ K2Þgjj ¼ ð1þ K2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o=2ckw

p
; K is

the undulator deflection parameter, and c ¼ o
½z=cð1þ 1=2g2jj Þ � t� is the slow time variable.
In this work, we intend to show the applicability

of the quasilinear approximation near the satura-
tion point. For further simplification we restrict
our consideration to the case of a monochromatic
electromagnetic field. It is true for the case of
amplification of the monochromatic seed signal at
frequency o: For SASE near saturation the
relative spectral width is significantly less than r
(or, more generally, than the ‘‘one-gainlength
amplification bandwidth’’), therefore the results

for the monochromatic signal, presented below,
are probably applicable also. Then the field
amplitude A does not depend on time c; and the
distribution function f is assumed to be periodic in
c: f ðc; Z; xÞ ¼

P
N

n¼�N
fnðZ; xÞeinc and normalized

as
R
N

�N
f0ðZ; xÞ dZ ¼ 1: This assumption allowed us

to write down the chain of equations for the
harmonics of the distribution function:

qfn
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þ iZnfn ¼ A
q
qZ
fn�1 þ An q

qZ
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Truncation of Eq. (2) for nX2 gives the closed
system of equations that may be solved numeri-
cally:
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þ iZf1 ¼ A
qf0
qZ

qf0
qx

¼ 2 Re An q
qZ
f1

� �

dA
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¼

Z
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3. Numerical solution

The numerical solution is based on the usage of
the explicit centered difference scheme. Some
results for centered Gaussian initial distribution
with standard deviation 1 are presented in Figs. 1
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Fig. 1. Dependence of the normalized efficiency jAj2 on the longitudinal coordinate x:
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and 2. Fig. 1 shows the dependence of the field
amplitude on the longitudinal coordinate. Note
that the efficiency is �r/ZS ¼ rjAj2: One can see
that at some value of x the exponential growth
stops and the field amplitude reaches its first
maximum. The cause of this becomes clear after
considering the behavior of the average distribu-
tion function at different x (Fig. 2). The increase of
the first harmonic in our approximation leads to
the growth of the energy spread, which causes the
‘‘saturation’’. Fig. 3 shows the square of bunching

j
R
f1 dZj2: It may be seen that its value remains

significantly less than one until the first maximum
of the field amplitude. This fact confirms the
statement that the quasilinear mechanism of
saturation dominates at the first stage.

4. Values of higher harmonics

To verify the self-consistency of the proposed
quasilinear approximation we need to estimate the
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Fig. 2. Modification of the distribution function at different stages of the ‘‘saturation’’ process: (a) initial distribution (x ¼ 0); (b)
distribution at half of the distance before the first maximum (x ¼ 10); (c) distribution at the first maximum of the field amplitude

(x ¼ 15:3).
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values of higher current harmonics. The approx-
imate solution for the second harmonic of the
distribution function may be found from Eq. (2):

f2 ¼
Z x

0
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0; ZÞ dx0: ð4Þ

Then the ‘‘improved’’ quasilinear system can be
written as
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The first term on the right side of the first
equation in Eq. (30) is proportional to A; but the
second term is proportional to A3: Therefore, the
contribution of the last term to the value of f1 is
small at least at the first stage of saturation (before
the first field maximum). The second harmonic
bunching is plotted in Fig. 3.

5. Conclusion

The quasilinear equations describe the satura-
tion phenomena consistently. The calculated nor-
malized efficiencies �/ZS for different values of
the initial normalized relative energy spread s ¼ffiffiffiffiffiffiffiffiffiffiffiffi

/Z2S
p

are shown in Fig. 4. Further investigation
of the applicability region of these equations and
its comparisons with other models (for example
[3]) is planned.
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Fig. 3. (1) Square module of bunching j
R
f1dZj2 and (2) second harmonic j

R
f2 dZj2 versus distance.
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Fig. 4. Dependence of the maximum normalized efficiency

ðjAj2Þmax on the normalized relative energy spread s (solid line).
Dashed line was obtained using fitting formula [4].
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